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Diffusion-annihilation in the presence of a driving field 
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Received 15 March 1995 

Abshaci We study the effect of an extemal driving force on a simple slochasfic reaction- 
diffusion system in one dimension. In our model each lattice site may be occupied by at most 
one particle. These particles hop with rates (1 & 9 ) / 2  to the right and left nearest neighbouring 
site respectively if this site is vacant, and annihilate with rate one if it is occupied. We show 
that density fluctuations (i.e. the mth moments (N") of the density distribution at lime t) do 
not depend on the spatial anisovopy 7 induced by the driving field, irrespective of the initial 
condition. hihermore, we show that if one t&es certain 1ranslationaUy invariant averages over 
initial statfs (e.g. random initial conditions) even local fluctualions do not depend on q. In 
the scaling reghe f ,.. L2 the effect of the driving~can be completely absorbed in a Galilei 
tnnsfomtion. We compute the probability of finding a system of L sites in its stationKy state 
at timet if it wzu fully occupied at time 10 = 0. 

1. Introduction 

Stochastic reaction-diffusion processes in one dimension have received a considerable 
amount of attention (for a brief review see e.g. [I]). Despite their simplicity they show 
a very rich behaviour and some of the results so far obtained are of experimental relevance 
[Z]. Another reason for their popularity is the wide range of applicability: systems of this 
kind map to interface dynamics [3], to polymers in random media [4] or, quite close to every 
day life, to traffic problems [5]. This list is by no means exhaustive, but provides ample 
motivation for the study of such models. In addition, they map to well known problems 
in many-body physics, particularly to integrable vertex models. A considerable amount of 
exact and rigorous results have been obtained using this 'mapping [6]. 

Here we consider a model defined on a ring of ,L sites with periodic boundary conditions 
where each lattice site may be occupied by at most one particle. These particles (denoted 
A) hop with rates (1 f q) /2 to the right or left nearest neighbouring site respectively if this 
site is vacant (denoted 0), and annihilate with rate A if it is occupied: 

A0 + 0 A  
OA + A0 
AA + 00 A. 

(1 + v)/2 
(1 - q)/2 

(In this paper we study only A = 1 .) This model, which is closely related to zero temperature 
Glauber dynamics [7, IO], has been studied by a number of authors [IO-141. In the limit 
A = 0 the model reduces to the well known asymmetric exclusion process [15], whereas for 
1 + 00, equivalent to the absence of any diffusion, the model becomes equivalent to random 
sequential adsorption of dimers [16]. A discrete time version of the model was studied in 
[17]. Physically, the exclusion principle corresponds to a hard-core on-site repulsion and 
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the a symehy  in the left and right hopping rates may be thought of as the result of a 
field driving the particles in one preferred direction. The pair annihilation finally takes into 
account the possibility of an effective short-range attraction leading to unbreakable, inert 
pairs of particles. 

For h = 0 the effect of the driving field has been well studied and it turns out to be 
rather drastic. As opposed to the driven model without exclusion where the drift may he 
absorbed in a simple lattice Galilei transformation [IS], here the asymmetry leads to the 
formation of shocks [19]. Not many exact results are known for the time evolution of the 
system, but the mapping to the six-vertex model has been shown to he useful by using the 
Bethe ansatz 120,211 and related methods 1221. The dynamical exponent appearing in the 
dynamical structure function of the system was found to be z = 3/2 [20] rather than z = 2 
in the undriven exclusion process or the non-interacting driven system without exclusion. 
For non-zero but small annihilation rates h, a recent study based on scaling arguments, 
mean-field approaches, random walk considerations and numerical results has given a very 
different scenario: in the presence of pair annihilation the effect of the driving appears to 
be very small 1141. In addition, it is known that for A = 1 and an initially full lattice neither 
the time-dependent density nor the two-point density correlation function depend on the 
driving [lo]. 

The effect of a driving field has also been studied in other related models. Numerical 
evidence shows that in a similar reaction-diffusion process where exclusion particles of two 
different species A and B diffuse and annihilate ( A  + B + 0), a driving field does change 
the universality class if the two kinds of particles move in opposite directions [23]. These 
observations make a more detailed study of such systems desirable. 

It is the aim of this paper to provide some exact results concerning the driving in the 
presence of the reaction for the onaspecies model and to go beyond the results achieved 
so far in [10,14] which study the behaviour of the model only in terms of the (total) 
average density for random initial conditions and the two-point density correlation function 
for an initially full lattice. In section 2 we define the model in terms of a master equation 
written in a quantum Hamiltonian formalism. We shall focus on the case h = 1 because, 
for that particular choice, the model may be described in terms of free fermions and 
treated rigorously. Exact expressions for various correlation functions (in principle, for 
oll correlation functions) become readily available. It turns out (section 3) that fluctuations 
in the total density of particles do not depend on the driving field at all; the same is true 
for some other average values to be specified below. Furthermore, if one takes certain 
translationally invariant averages over initial states, e.g. random initial conditions, arbitrary 
local density correlations show no dependence on the asymmetry 7. These results generalize 
the results of [IO] which studies the average density and the two-point correlation function 
for an initially full lattice and other earlier findings [24]. The general solution of the master 
equation and some further results concerning the scaling regime are given in section 4. In 
section 5 we summarize and discuss our results. 

2. The master equation in quantum Hamiltonian formulation 

2.1. Dejnitions 

We define the process in terms of a mister equation for the probability f(n; I) of finding, 
at time t ,  any configuration of particles in the system of L sites with periodic boundary 
conditions. Here = [nl, nz, . . . , n ~ ]  where ni = 0, 1 and 1 < i < L labels the sites of 
the lattice. An alternative possibility is to use the set {x l ,  x2, . . . , X N }  of occupied lattice 
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sites; in this notation, the empty set represents the empty lattice and 1 < N 6 L is the 
total number of particles in the configuration. We shall express the time evolution given by 
the master equation in terms of a quantum Hamiltonian H 1251. This is discussed in detail 
in a number of publications (for consistency of notation see e.g. 161) and we shall repeat 
only the essential elements of the mapping. The advantage of this approach is that there are 
standard methods of dealing with the resulting time evolution operator X. The applicability 
of these techniques, in the case at hand essentially a Jordan-Wigner transformation and the 
representation of states in terms of a fermionic Fock space, does not arise naturally and 
obviously if the master equation is written down in standard form. 

The idea is to represent each of the Z L  possible configurations in X = IO, l)L by a vector 
[ E )  (or In,, . . . , X N  ), with [ 0 )  = [ ) being the empty state). The probability distribution 
is then mapped to a state vector 

The vectors [E) together with the transposed vectors ( E  1 form an orthonormal basis of 
(Cz)@L and the time evolution is defined in terms of a linear 'Hamilton' operator H acting 
on this space of dimension ZL: 

(5) 
a -If@)) = -Hlf(t)). 
at 

[ f ( t o  + z) =e-"%%). (6) 

A state at time t = to + z is, therefore, given in terms of an initial state at time to by 

From (4) and (5) and using f @, t )  = ( E  I f ( t )  ) the master equation takes the form 
a -f@; f )  = -bIHlf(tN. 
at 

Note that 

(slf(t))=Cf@;t)=l 
"EX 

where 

(SI = 
"EX 

(7) 

which expresses conservation of probability and which implies ( s lH = 0. 
Expectation values (Q) are calculated as matrix elements of suitably chosen operators 

Q. A complete set of observables are the occupation numbers nk = 0, l .  Defining projection 
operators on states with a particle on site k of the chain as 

one finds that the average density of particles at site k is given by ( n k )  = (slnk[f(r)). 
Correlation functions (nK, . . . nk;). i.e. the protabilities of finding particles on the set of 
sites [ k l ,  . . . , k j } ,  are computed analogously. 

For later convenience we also introduce the operators 8,' = (U: f iul)/2. In our 
convention 

0 0  
s T = ( l  o ) k  
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creates a particle at site k when acting to the right, while 

annihilates a particle at site k. In spin language this means that spin-down is identitied with 
a particle, while spin-up represents a vacancy. Note that 

(13) (.IS,' = (Sink and (SISF = (SI(] -nk). 

Introducing the ladder operators S* = E,"=, sf one may write 

(14) s+ (SI = (Ole . 
Using the commutation relations for the Pauli matrices then yields (13). 

Now we can define the process in terms of the quantum Hamiltonian 
L 

H = r U k  (15) 
k=l 

with the nearest-neighbour reaction matrices 

u k  = !%! (nk(1 -nk+l) -sk+sk+l) + 9 ((1 -nk)nk+l - S F S & I )  2 
fk(nknk+l -S;~;++I )  

(16) 

This together with (7) defines the process. The Hamiltonian may be written H = H, + q H d  

where the driving part H d  is given by H d  = 1/2C,"=,(sFsztl - S : S ~ ; ~ )  and Hs is the 
Hamiltonian for the system without driving. 

2.2. Fermion representation of H 

For .A = 1 the Hamiltonian becomes bilinear in the creation and annihilation operators sf .  
This suggests rewriting H by introducing fermionic operators through a Jordan-Wigner 
transformation [26]. We define 

A=l 1+17 ~1 - 17 - - ( n k  -szsF+~) f - h + l  -S;S&I). 2 2 

k 

Qk = 
id 

satisfying the anticommutation relations [ a k ,  all =~(aJ ,  a/]  = o and (ai ,  all = 8k.I. ~ o t e  that 
because of the periodic boundary conditions for the Pauli matrices one has ai+l = ai& 
and ( t ~ ~ l  = Q ~ a l .  QL may be written QL = ( - l ) N  where N = Z n k  is the number 
operator. Since by the action of H the particle number changes only in units of two, QL 
commutes with H and splits it into a sector with an even number of particles (QI. = +1) 
and into a sector with an odd number of particles (QL = -1). In terms of the fermionic 
operators one finds 
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and we arrive at the following expressions for H, and Hd: 

We also note that H, and Hd commute if A = 1. Independently of A and q the non-degenerate 
ground state of H ,  corresponding to the steady state of the system, is the totally empty state 
IO) in the sector with an even number of particles, and the state = 1/L E;=, Ik) 
where one particle may be found with equal probability 1/L anywhere in the lattice in the 
sector with an odd number of particles. 

Since expectation values (nk(t)) of the stochastic variables nr ~= 0 , l  are given by the 
matrix elements (slnkexp(-Ht)[f) of the operator nk and since also (slexp(Ht) = (SI. 
one may introduce time-dependent operators 

U(r) = exp (Ht)Uexp-(Ht) (25) 

and write ( 0 ( f ) )  = ( s l O ( f ) [ f )  for an arbitrary operator U. According to definition (25) 
one has 

(26) 

Among the quantities of interest are the density of particles in the system and fluctuations 
in this quantity. The mth moment of the particle number distribution is the expectation 
value ( N m ( f ) )  where N is the number operator N = a:a,. Any 0 may be Written as 
a product of the fermionic annihilation and creation operators and it is, therefore, sufficient 
to study the time evolution of these operators. 

d -0 = U  = [ H , O ] .  
dt 

It is useful to introduce the Fourier transforms 

satisfj . ) = vertiir 

Thus, the representation of the number operator in Fourier space is 

(27) and (28) yields 

N = zbkb , .  
P 

Here the sum runs over all integers p = 0, . . . , L - 1 in the sector with an odd number of 
particles and over the half-odd integers p = 1/2,3/2,. . . , L - 1/2 in the even sector. 
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The Hamiltonian for A = 1 reads 

Hs = [ (1 - cos F) bsb, + sin L 
P 

2ZP Xd = -i sin ( L) bibp. 
P 

(32) 

(33) 

Hs has already been obtained in [13]. 

2.3. Initial states in the fermion representation 

Having discussed the representation of operators in terms of the fermionic operators we turn 
to the representation of initial configurations or states. In what follows we shall use the term 
‘(initial) configuration’ for a vector [k, ,  . . . , kN) or [E), i.e. for a simultaneous eigenstate of 
all nk. (Initial) states I f )  = E,, f@l& are vectors which may be superpositions of such 
configurations, and normalized such that (slf) = 1. The vector 10) is the vacuum state with 
respect to the annihilation operators ~ ~ 1 0 )  = 0. In spin language this is the ferromagnetic 
state with all spins up. Acting with creation operators yields 

~ ~ ~ . . . a $ l O ) = l k l  ,..., k ~ )  (ki < k z < . . . < k N )  . (34) 

A general translationally invariant N-particle state is obtained by acting with products 
bi, . . . bJN on 10) where xi pi = 0. A special class are those built by polynomials in 
the bilinear expressions E: = bl,bf, where p = 112,312,. . . , ( L  - 1)p. Among these 
particular translationally invariant states are uncorrelated random initial conditions with an 
even number of particles. The uncorrelated random initial state with density p is the product 
measure 

where IN) is the N-particle state where each configuration appears with equal weight. By 
projection on the sectors with even and odd particle numbers we obtain 

where we have used Q L  defined in (17). 

for the left zero-energy eigenvector (SI of X that 
From the representations (32) and (33) of X and using (E!,,)’ = (E,!)’ = 0 one finds 

(p” + ( S y .  (37) 
The product and sum over p ,  p’ run over p = 1/2,3 12, . . . , ( L  - l)/2 (even sector), and 
over p’ = 1,2, . . . , L / 2  - 1 (odd sector), respectively. This in turn implies 



Di@usion<nnihilation in the presence of a drivinggfreld 3411 

Hence, 

The completely full lattice is simply given by 

IU  = n B$). 
P 

(41) 

In what follows we shall focus on the even sector. For a study of correlation functions 
(section 4) it is useful to note 

( s I c v e " ( b ~ + c o t ( ~ ) b - , )  = O  

which may be verified using the momentum space representation (37) of (sleven. 

3. Dynamics of the system on a translationally invariant subspace 

In the last section we introduced the subspace U generated by the operators E: = 
b-,,b,,. t i  

[Bp,  B,!] = b-,b-, t - bLb, = ZC,, playing the role of the U; matrix. I,, I b,,b,, t + b-,,b-, t 
Together with B,, = b,,b-, they satisfy the algebra of the Pauli matrices, with 

t commutes with all B,,, B,,, C,, and acts as a unit operator on this subspace: it also satisfies 
I,,X,, = XPZp = X, for X,, = B,,, Bj.  C,,. These relations are easy io verify by using the 
anticommutation relations forb; and b,,. 

This subspace is of interest for three reasons. First, H can be written in terms of these 
operators: 

H = (1 - cos (7)) N,, - 2 sin (7) B, - in sin (F) (I,, - 1) (43) 
P 

where we have introduced the number operator N,, = 1 - 2CP. Therefore, U is an invariant 
subspace of H .  Second, a physically important class of initial conditions, namely random 
initial conditions, inchding the steady state and the fully occupied lattice, are in this 
subspace. Finally, some physically importaut expectation values are given by operators 
constructed from BJ and B,,. In particular, using (31) one obtains 

N =EN,,. 
P 

Without further calculation we can now state the following results. 
(i) The subspace V of dimension ZLlz  generated by B,! acting on the vacuum state 10) 

is an invariant subspace of H .  On this subspace Hd = 0, i.e. the driving has no effect on 
any correlation function if the system is at time t =D in an initial state which is contained 
in U (e.g. random initial conditions). 

This result can be seen by observing the fact that I,, is the unit operator on this subspace 
which gives Hd = 0. As a result, the state at time t does not depend on rj which in turns 
implies that no correlation in that state can depend on the driving. 

(ii) The time evolution of the operators U built from operators B,! and B,, (e.g. the 
density operator) does not depend on the driving, irrespective of the initial condition. 
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This is again obvious since H, commutes with any such operator. Applying this result 
to powers N m  of N we find the next result. 

(iii) The probability P(N; t )  of finding precisely N particles at time t in the system 
does not, for any initial condition, depend on the driving. 

The same also applies for the moments ( N m ( t ) )  of this dishibution. For m = 1 this 
was shown in [IO]. An interesting special case is P'(0 t )  = (Ol f ( t ) )  giving the probability 
that the system has reached the steady state at time t from an initial state If). To obtain 
this quantity we note that H (43) restricted to the subspace V is a sum of 2 x 2 matrices 
h, : 

0 -sin2np/L 

P 
(45) 

For random initial conditions (40) with an even number of particles, computing exp ( - H t )  = n, exp (-hpt) and taking the product of the matrix elements (OlB,!(t)lO) then gives the exact 
expression 

For an initially full lattice this simplifies to 

4. Full solution of the master equation 

The master equation is solved if one has found explicit expressions for and U&), or 
their Fourier transforms. A knowledge of these quantities then allows the explicit calculation 
of any correlation function for any initial condition, including multi-time correlators giving 
arbitrary conditional probabilities. We will compute ai(t) and a&) and study the effect of 
the driving on these quantities for late times. Applications to specific correlation functions 
of interest will be given elsewhere. For definiteness we only study the sector with an even 
number of particles and we also assume, as in the preceding section, L even. 

It is 'interesting to first study the differential equation satisfied by the local density 
(nk(t)). Differentiating with respect to time one finds 

d 1 v 
dt - (nr( t ) )  = 5 ((?k+l(t)) + (nk-I(t)) - 2(nw(t))) - 5 ( (nr+lO))  - @a-1 

-@ + q)(nk-~(t)nk(t)) - (A - ~ ) ( ~ r ( h + i ( t ) ) .  (48) 

In the linear terms one recognizes a lattice Laplacian and lattice derivative respectively. 
For A = 0 the nonlinear term is also a lattice derivative and the equation is a discrete form 
of Burgers equation I271 describing the evolution of shocks for q # 0. Any X > 0 will 
result in a strong dampening of the amplitude and the question arises to which extent the 
nonlinear effects associated with the driving continue to play a role. For A = 1 this question 
was partially answered in the last section, the result being, somewhat surprisingly, that, for 
the initial conditions considered, the driving induces no nonlinear effects at all. Here we 
study the form of local correlations for arbitrary initial conditions. 
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The simple form of H in Fourier space suggests studying bi(t) and bp(t) rather than 
af(t) and a&). Applying (26) gives a set of two coupled ordinary differential equationst: 

d 
-bi(t) = cpb6(t) +2sin 
dt 
d 
dt 
--bp(t) -cpbp(t) 

solved by 

(51) 

b,(t) = e-‘Pfb, (52) 

b;(t) = ecn’ (b; +cot - ZF (1 - e-(‘P+‘-p)‘) b-,) 
L 

with bL(0) = bi, b,(O) = b, and 

(53) 
2ZP . 2np cp = 1 -cos - - iq sin -. L L 

From (51) and (52) one obtains 

and, therefore, an explicit expression of any correlation function at time t in terms of 
correlators in the initial state. In particular, one may use (42) to obtain 

This Solves the initial value problem for the average density. 
Retuming to arbitrary timedependent correlators we note that (51)-(53) demonstrate the 

impact of the driving on the system in the scaling regime. For times t >> Lz all correlations 
decay exponentially with correlation time 5 =~2L2/nz resulting from the slowest mode 
p = 1/2. For times in the scaling regime t - Lz and L large, one may approximate c,, by 

that is, the effect of the driving may be absorbed in a Galilei transformation ri ~4 ri + qt 
where ri = ki /L  are the scaled space coordinates appearing in the correlation function. 
There are no other effects, unlike in the absence of annihilation where the driving induces the 
evolution of shocks. For arbitrary translationally invariant initial conditions the dependence 
of the correlation functions on 17 vanishes completely in the scaling limit. It may be 
worthwhile pointing out that in the continuum theory this is not surprising: the two-point 
correlator proportional to A appearing in (48) (which in the continuum limit becomes an 
additional term proportional to nz in Burgers equation) indeed suggests that for long times 
the nonlinearity induced by the driving becomes irrelevant. 

t Because of the bounday conditions these equations describe the time evolution of the creation and annihilntion 
operators only when applied to products with an even number of opemom. This is not B restriction as all 
expectation values (nt, . . . n t N )  are of this form. 



3414 G M Schutz 

5. Conclusions 

We have studied the effect of driving in a simple reaction-diffusion system where exclusion 
particles hop with rates (1 f q ) / 2  to the right and left respectively if the nearest-neighbour 
sites are empty, and which are annihilated in pairs with rate one if the nearest-neighbour 
site is occupied. We obtained the following results. 

(i) Certain translationally invariant timedependent expectation values including the nth 
moments (Nm) of the particle number distribution do not depend on the driving parameter 
7, regardless of the initial condition. 

(ii) Arbitrary time-dependent expectation values of occupation numbers (nk, . . . nr,) do 
not depend on q if at time f = 0 one takes certain translationally invariant averages over 
initial states, e.g. uncorrelated random initial conditions. 

(iii) In the scaling regime f c L2, the effect of the driving can be completely absorbed 
in a Galilei transformation. 

(iv) The probability that the system has reached its steady state (the empty lattice) at 
time f from an uncorrelated random initial condition with density p and an even number of 
p d c l e s  is given by (46). 

These results have been obtained for an annihilation rate A = 1. It would be very 
interesting to study the system for other values of h in order to understand the transition to 
the limiting cases A = 0 and A = 00. For A = 0 (the asymmetric exclusion process) the 
introduction of driving has a very strong effect, it causes the evolution of shocks from local 
inhomogeneities and it is not clear to which extent these effects survive in the presence 
of annihilation; our calculation shows that for A = 1 they are completely absent in the 
scaling regime. It is interesting to note that it is not the exclusion principle, as such, 
which is responsible for the nonlinear behaviour of the asymmetric exclusion process, but 
the strength of the pair interaction between neighbouring particles. In stochastic language 
this is the rate of change of a pair of neighbouring particles A compared to the diffusion 
rates (1 f 7)/Z. A satisfactory understanding of this interplay remains an open problem. 
Intuitively one would expect the nonlinear behaviour to vanish for late times for any A # 0 
as the system will then be almost empty and, therefore, effectively non-interacting. This is 
supported by various arguments put forward in [14] and by the known dynamical exponent 
z = 2 of the asymmetric exclusion process in the regime of low (infinitesimal) densities 
[12] (as opposed to z = 312 for finite densities). A qualification of the expression ‘late 
times’, and, more importantly, what happens before such late times remains open to debate. 

Two other interesting open problems are (a) the generalization of our results to the 
more general model which also allows for the creation of pairs of particles 1101 and (b) 
the approach to local equilibrium, i.e. to a local extended region of empty sites. The first 
question to be asked in this context is what is the probability of reaching a state with, say, 
M empty neighbouring sites. The next question is then how this state further evolves in 
time. It is, of course, not stationary as particles are injected and absorbed by diffusion at 
the boundaries of this region, but with time-dependent (vanishing) rates. For this problem 
the driving will make a difference as the injection of particles at the left boundary of this 
region will be stronger than the loss of particles (if particles move preferredly to the left). 
At the right boundary of this region the situation will be reversed, the loss will exceed the 
gain. The result of section 4 shows that the problem with a drift may be obtained from the 
symmetric problem by a Galilei transformation and, therefore, gives a partial answer to the 
question. Equation (46) gives the probability of finding the system in global equilibrium 
which does not depend on the driving. 
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